Surface topography of microtubule walls decorated with monomeric and dimeric kinesin constructs.

نویسندگان

  • A Hoenger
  • M Doerhoefer
  • G Woehlke
  • P Tittmann
  • H Gross
  • Y H Song
  • E Mandelkow
چکیده

The surface topography of opened-up microtubule walls (sheets) decorated with monomeric and dimeric kinesin motor domains was investigated by freeze-drying and unidirectional metal shadowing. Electron microscopy of surface-shadowed specimens produces images with a high signal/noise ratio, which enable a direct observation of surface features below 2 nm detail. Here we investigate the inner and outer surface of microtubules and tubulin sheets with and without decoration by kinesin motor domains. Tubulin sheets are flattened walls of microtubules, keeping lateral protofilament contacts intact. Surface shadowing reveals the following features: (i) when the microtubule outside is exposed the surface relief is dominated by the bound motor domains. Monomeric motor constructs generate a strong 8 nm periodicity, corresponding to the binding of one motor domain per alpha-beta-tubulin heterodimer. This surface periodicity largely disappears when dimeric kinesin motor domains are used for decoration, even though it is still visible in negatively stained or frozen hydrated specimens. This could be explained by disorder in the binding of the second (loosely tethered) kinesin head, and/or disorder in the coiled-coil tail. (ii) Both surfaces of undecorated sheets or microtubules, as well as the inner surface of decorated sheets, reveal a strong 4 nm repeat (due to the periodicity of tubulin monomers) and a weak 8 nm repeat (due to slight differences between alpha- and beta-tubulin). The differences between alpha- and beta-tubulin on the inner surface are stronger than expected from cryo-electron microscopy of unstained microtubules, indicating the existence of tubulin subdomain-specific surface properties that reflect the surface corrugation and hence metal deposition during evaporation. The 16 nm periodicity visible in some negatively stained specimens (caused by the pairing of cooperatively bound kinesin dimers) is not detected by surface shadowing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Reconstructions of Microtubules Decorated with Monomeric and Dimeric Kinesins: Comparison with X-Ray Structure and Implications for Motility

We have decorated microtubules with monomeric and dimeric kinesin constructs, studied their structure by cryoelectron microscopy and three-dimensional image reconstruction, and compared the results with the x-ray crystal structure of monomeric and dimeric kinesin. A monomeric kinesin construct (rK354, containing only a short neck helix insufficient for coiled-coil formation) decorates microtubu...

متن کامل

Structures of kinesin and kinesin-microtubule interactions.

Several X-ray crystal structures of kinesin motor domains have recently been solved at high resolution ( approximately 0.2-0.3 nm), in both their monomeric and dimeric states. They show the folding of the polypeptide chain and different arrangements of subunits in the dimer. In addition, cryo-electron microscopy and image reconstruction have revealed microtubules decorated with kinesin at inter...

متن کامل

A new look at the microtubule binding patterns of dimeric kinesins.

The interactions of monomeric and dimeric kinesin and ncd constructs with microtubules have been investigated using cryo-electron microscopy (cryo-EM) and several biochemical methods. There is a good consensus on the structure of dimeric ncd when bound to a tubulin dimer showing one head attached directly to tubulin, and the second head tethered to the first. However, the 3D maps of dimeric kin...

متن کامل

The EB1 homolog Mal3 stimulates the ATPase of the kinesin Tea2 by recruiting it to the microtubule.

Tea2 is a kinesin family member from Schizosaccharomyces pombe that is targeted to microtubule tips and cell ends in a process that depends on Mal3. Constructs of Tea2 containing the motor domain only or the motor domain plus the N-terminal extension are monomeric, whereas a construct including the first predicted coiled coil region is dimeric. These constructs have a low basal rate of ATP hydr...

متن کامل

Mechanism of Processive Movement of Monomeric and Dimeric Kinesin Molecules

Kinesin molecules are motor proteins capable of moving along microtubule by hydrolyzing ATP. They generally have several forms of construct. This review focuses on two of the most studied forms: monomers such as KIF1A (kinesin-3 family) and dimers such as conventional kinesin (kinesin-1 family), both of which can move processively towards the microtubule plus end. There now exist numerous model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological chemistry

دوره 381 9-10  شماره 

صفحات  -

تاریخ انتشار 2000